On preparing ground states of gapped Hamiltonians: An efficient Quantum Lovász Local Lemma
نویسنده
چکیده
A frustration-free local Hamiltonian has the property that its ground state minimises the energy of all local terms simultaneously. In general, even deciding whether a Hamiltonian is frustration-free is a hard task, as it is closely related to the QMA1-complete quantum satisfiability problem (QSAT) – the quantum analogue of SAT, which is the archetypal NP-complete problem in classical computer science. This connection shows that the frustration-free property is not only relevant to physics but also to computer science. The Quantum Lovász Local Lemma (QLLL) provides a sufficient condition for frustration-freeness. Is there an efficient way to prepare a frustration-free state under the conditions of the QLLL? Previous results showed that the answer is positive if all local terms commute. These works were based on Moser’s “compression argument” which was the original analysis technique of the celebrated resampling algorithm. We generalise and simplify the “compression argument”, so that it provides a simplified version of the previous quantum results, and improves on some classical results as well. More importantly, we improve on the previous constructive results by designing an algorithm that works efficiently for non-commuting terms as well, assuming that the system is “uniformly” gapped, by which we mean that the system and all its subsystems have an inverse polynomial energy gap. Similarly to the previous results, our algorithm has the charming feature that it uses only local measurement operations corresponding to the local Hamiltonian terms.
منابع مشابه
Quantum Hamiltonian complexity and the detectability lemma
Local Hamiltonians, the central object of study in condensed matter physics, are the quantum analogue of CSPs, and ground states of Hamiltonians are the quantum analogue of satisfying assignments. The major difference between the two is the existence of multi-particle entanglement in the ground state, which introduces a whole new level of difficulty in tackling questions such as quantum PCP, qu...
متن کاملA polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians
Computing ground states of local Hamiltonians is a fundamental problem in condensed matter physics. We give the first randomized polynomial-time algorithm for finding ground states of gapped one-dimensional Hamiltonians: it outputs an (inverse-polynomial) approximation, expressed as a matrix product state (MPS) of polynomial bond dimension. The algorithm combines many ingredients, including rec...
متن کاملA simple proof of the detectability lemma and spectral gap amplification
The detectability lemma is a useful tool for probing the structure of gapped ground states of frustration-free Hamiltonians of lattice spin models. The lemma provides an estimate on the error incurred by approximating the ground space projector with a product of local projectors. We provide a new, simpler proof for the detectability lemma which applies to an arbitrary ordering of the local proj...
متن کاملSimple proof of the detectability lemma and spectral gap amplification
The detectability lemma is a useful tool for probing the structure of gapped ground states of frustration-free Hamiltonians of lattice spin models. The lemma provides an estimate on the error incurred by approximating the ground space projector with a product of local projectors. We provide a simpler proof for the detectability lemma which applies to an arbitrary ordering of the local projector...
متن کاملLocal interactions and non-abelian quantum loop gases.
Two-dimensional quantum loop gases are elementary examples of topological ground states with Abelian or non-Abelian anyonic excitations. While Abelian loop gases appear as ground states of local, gapped Hamiltonians such as the toric code, we show that gapped non-Abelian loop gases require nonlocal interactions (or nontrivial inner products). Perturbing a local, gapless Hamiltonian with an anti...
متن کامل